دانلود مقاله ISI انگلیسی شماره 57498
ترجمه فارسی عنوان مقاله

نظارت بر شرایط ترانسفورماتور قدرت با استفاده از مدل سازی عصبی و روش آماری محلی برای تشخیص خطا

عنوان انگلیسی
Power transformers’ condition monitoring using neural modeling and the local statistical approach to fault diagnosis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
57498 2016 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 80, September 2016, Pages 150–159

ترجمه کلمات کلیدی
ترانسفورماتور قدرت ؛ نظارت بر وضعیت حرارتی؛ شبکه های عصبی فازی؛ تشخیص خطا؛ روش آماری محلی
کلمات کلیدی انگلیسی
Power transformer; Thermal condition monitoring; Neural-fuzzy networks; Fault diagnosis; Local statistical approach
پیش نمایش مقاله
پیش نمایش مقاله  نظارت بر شرایط ترانسفورماتور قدرت با استفاده از مدل سازی عصبی و روش آماری محلی برای تشخیص خطا

چکیده انگلیسی

On-line monitoring of electric power transformers can provide a clear indication of their status and ageing behavior. This paper proposes neural modeling and the local statistical approach to fault diagnosis for the detection of incipient faults in power transformers. The method can detect transformer failures at their early stages and consequently can deter critical conditions for the power grid. A neural-fuzzy network is used to model the thermal condition of the power transformer in fault-free operation (the thermal condition is associated to a temperature variable known as hot-spot temperature). The output of the neural-fuzzy network is compared to measurements from the power transformer and the obtained residuals undergo statistical processing according to a fault detection and isolation algorithm. If a fault threshold (that is optimally defined according to detection theory) is exceeded, then deviation from normal operation can be detected at its early stages and an alarm can be launched. In several cases fault isolation can be also performed, i.e. the sources of fault in the power transformer model can be also identified. The performance of the proposed methodology is tested through simulation experiments.