دانلود مقاله ISI انگلیسی شماره 57525
ترجمه فارسی عنوان مقاله

مدلسازی ریسک ترانسفورماتور با تقویت تصادفی تعمیر و نگهداری قابلیت اطمینان محور

عنوان انگلیسی
Transformer risk modelling by stochastic augmentation of reliability-centred maintenance
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
57525 2015 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Electric Power Systems Research, Volume 119, February 2015, Pages 471–477

ترجمه کلمات کلیدی
تحلیل ریسک؛ ترانسفورماتور؛ مدل سازی قابلیت اطمینان ؛ تعمیر و نگهداری قابلیت اطمینان محور
کلمات کلیدی انگلیسی
FMECA, failure mode effect and criticality analysis; FMEA, failure mode effect analysis; ICT, information and computer technology; MOM, method of moments; MTTR, mean time to repair; MTTFF, mean time to first failure; RCM, reliability-centred maintenance; RPN, risk priority numberMarkov processes; Power asset management; Reliability-centred maintenance; Risk analysis; Transformer; Reliability modelling
پیش نمایش مقاله
پیش نمایش مقاله  مدلسازی ریسک ترانسفورماتور با تقویت تصادفی تعمیر و نگهداری قابلیت اطمینان محور

چکیده انگلیسی

This paper reviews the literature and then applies power transformer case studies to develop a risk assessment model that augments the probabilistic capabilities of Reliability-centred maintenance (RCM). It is usually very difficult to assess the effectiveness of the RCM at its inception, when data is inadequate or when it is implemented on a large population of assets, especially when most of them are small in size as in the distribution systems. Thus, the major contribution of the study rests on applying a key performance indicator (KPI) for assessing the effectiveness of the RCM programmes, obtained by trending the profile of the mean-time-to-first-failure (MTTFF) and the average annual repair costs. The MTTFF, determined using Markov analysis, is inversely proportional to the costs. Besides, the method of moments is applied to statistical, historical data to generate a failure probability distribution comparative model, which lacks in the current practices for conducting a failure mode effect and criticality analysis (FMECA). Finally, the Markov derives complement of uptime-steady-state probability as input for FMECA, using limited data; which is an improvement on the current approaches. The overall approach developed offers a cost effective risk-priority-screening model for transformers, which can be applied prior to rigorous testing and inspection procedures on individual items during the RCM application.