دانلود مقاله ISI انگلیسی شماره 67852
ترجمه فارسی عنوان مقاله

سیستم استنتاج مهندسی بردار تکاملی برای مدیریت ساخت و ساز

عنوان انگلیسی
Evolutionary support vector machine inference system for construction management
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
67852 2009 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Automation in Construction, Volume 18, Issue 5, August 2009, Pages 597–604

ترجمه کلمات کلیدی
الگوریتم های ژنتیک سریع کثیف ماشین بردار پشتیبانی، توسعه سیستم شی گرا
کلمات کلیدی انگلیسی
Fast messy genetic algorithms; Support vector machine; Object-oriented system development

چکیده انگلیسی

Problems in construction management are complex, full of uncertainty, and vary based on site environment. Two tools, the fast messy genetic algorithms (fmGA) and support vector machine (SVM), have been successfully applied to solve various problems in construction management. Considering the characteristics and merits of each, this paper combines the two to propose an Evolutionary Support Vector Machine Inference Model (ESIM). In the ESIM, the SVM is primarily employed to address learning and curve fitting, while fmGA addresses optimization. This model was developed to achieve the fittest C and γ parameters with minimal prediction error. This research further integrates the developed ESIM with an object-oriented (OO) computer technique to create an Evolutionary Support Vector Machine Inference System (ESIS). Simulations conducted to demonstrate the robustness of the model in application indicate that ESIS may be used as a multifarious intelligent decision support system in decision-making to help solve a wide range of construction management problems.