ترجمه فارسی عنوان مقاله
کشف هوش کسب و کار از بررسی های آنلاین محصولات: چارچوب قاعده استقرایی (قیاسی)
عنوان انگلیسی
Discovering business intelligence from online product reviews: A rule-induction framework
کد مقاله | سال انتشار | تعداد صفحات مقاله انگلیسی |
---|---|---|
686 | 2012 | 10 صفحه PDF |
منبع
Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)
Journal : Expert Systems with Applications, Volume 39, Issue 15, 1 November 2012, Pages 11870–11879
فهرست مطالب ترجمه فارسی
چکیده
مقدمه
پژوهش BI و تجزیه و تحلیل بررسی آنلاین محصولات
تجزیه و تحلیل بررسی آنلاین محصولات
استخراج قانون رابطه
نظریه مجموعه های سخت
چارچوب قانون استقرایی برای کشف هوش تجاری (هوش کسب و کار)
چارچوب قانون استقرایی
استخراج و فیلترکردن ویژگی ها
روش های قانون استقرایی
استخراج قانون رابطه
تئوری مجموعه های سخت
ارزیابی تجربی
بحث و گفتگو
نتایج و مسیرهای آینده
ترجمه کلمات کلیدی
تجارت الکترونیکی - بررسی آنلاین -
داده کاوی - متن کاوی - تئوری مجموعه راف - هوش کسب و کار - اعتبار آنلاین -
کلمات کلیدی انگلیسی
E-commerce,
Online reviews,
Data mining,
Text mining,
Association rule mining,
Rough set theory,
Business intelligence,
Online reputation,
ترجمه چکیده
بررسی آنلاین محصولات، منبع مهمی برای هوش کسب و کار (BI) محسوب می شود که به مدیران و بازاریابان در درک دغدغه ها و علایق مشتریان کمک می کند. حجم زیاد داده های بررسی شده کار تحلیل دغدغه های مشتریان را به صورت دستی دشوار می سازد. بدین منظور، برای آسان کردن این تجزیه و تحلیل، ابزارهای اتوماتیک به وجود آمده اند. با این حال بیشتر این ابزارها فاقد توانایی در استخراج روابط بین عبارات غنی بررسی شده و رتبه بندی مشتری می باشند. مدیران و بازاریابان اغلب برای پیدا کردن رابطه ها به صورت دستی به خواندن بازدید های حجیم کلی روی می آورند. به منظور پرداختن به این چالش ها، شرح و بسط دسته جدیدی از سیستم های BI را بر اساس تئوری مجموعه های سخت، یادگیری قاعده استقراء و روش های بازیابی اطلاعات پیشنهاد کردیم. چارچوب جدیدی را برای طراحی سیستم های BI ایجاد کردیم که بر اساس این رابطه بین دسته بندی های مشتری و بررسی هایشان را می توان استخراج کرد. با استفاده از بازدید محصولات مختلف از روی Amazon.com، آزمایش های کیفی و کمی را برای ارزیابی عملکرد سیستم BI که بر اساس چارچوب توسعه یافته انجام دادیم. نتایج نشان می دهد که سیستم به دقت بالایی دست یافته و پوشش موجود مرتبط با کیفیت قاعده است. همچنین قوانین جالب وآموزنده ای با پشتیبانی بالا و ارزش اعتماد ارائه شده است. یافته ها حاوی پیامدهای مهمی برای تجزیه و تحلیل تمایلات بازار و مدیریت اعتبار تجارت الکترونیک است.
ترجمه مقدمه
زمانی که تجارت الکترونیک از تعامل بیشتر میان کاربران با برنامه های 2.0 وب پشتیبانی می کند، محتوای تولید شده توسط کاربر که در این سایت ها مطرح شده به طور قابل توجهی در حال رشد است. کاربران نه تنها از محتوای وب بهره می برند، بلکه همچنین داده های حجیمی از مشارکت شان را تولید می کنند که اغلب بر تصمیم گیری های کاربران دیگر نیز اثر می گذارد. مطالعه ای نشان می دهد که بیش از سه چهارم از 2078 کاربر گزارش کرده اند که بررسی محصولات آنلاین تاثیر بسزایی بر تصمیم گیری خرید و فروش شان برجای گذاشته است (کامسکور، 2007).
این بررسی های از محصول آنلاین حاوی تشریحاتی در مورد اولویت ها، نظرات و توصیه های کاربر است که به عنوان منبع اصلی از هوش کسب و کار به کار گرفته می شود (BI). این موضوع به مدیران و بازاریابان کمک می کند که درک بهتری از مشتریان داشته باشند. پیتر دراکر به عنوان پژوهشگر در زمینه مدیریت تاکید می کند که این سوال «در نزد مشتری چیزی ارزش و اعتبار تلقی می شود» ممکن است به منظوردرک ماموریت و هدف تجاری به عنوان مهم ترین سوال برای پاسخ دادن تلقی شود (دراکر، 2003). با این حال، حجم بسیاری از داده های مربوط به بررسی آنلاین محصولات اطلاعات قابل توجهی را ایجاد می کند که متقابلا مشکلات اضافی را نیز به بار می آورد (بومن، دانتزیگ، منبر، و شوارتز، 1994)، این موضوع مسئله کشف BI را از روی بررسی ها و تجزیه و تحلیل نگرانی های مشتری را دشوار می کند.
دو قسمت اصلی از اطلاعات موجود در هر بررسی آنلاین شامل محتوای متنی و رتبه بندی عددی است که به ترتیب جنبه های توجه و تمایلات مشتری را نشان می دهد. با این حال، هیچ یک از این دو به تنهایی گزارش کاملی از «ارزش» واقعی محصول را ارائه نمی کنند (دراکر، 2003)، که توضیح درستی از رضایت مشتری به شمار می رود؛ بنابراین، وظیفه مهم یک مدیر این است که بین رتبه بندی عددی و محتوای متنی این بررسی ها به منظور درک چیزی که مشتری در محصول ارزش گذاری می کند، ارتباط برقرار کند. این کار به طور معمول با خواندن و استخراج دستی عبارات و کلمات کلیدی انجام می گیرد که دغدغه های مشتری و ارتباط دستی بین استخراج عبارات و رتبه بندی عددی را نشان می دهد. با وجود مفید بودن این موضوع، چنین تجزیه و تحلیلی وقت گیر است و به سرعت رشد بررسی های آنلاین را افزایش نمی دهد. ابزارها و تکنیک های خودکار برای تجزیه و تحلیل بررسی های آنلاین ارائه شده اند. این آثار سعی دارند تاثیر بررسی ها را بر روی خرید و فروش (زو و ژانگ، 2010)، توصیه محصولات (ایشیر، ژانگ، سیموف، و دبینهم، 2007)، ارزیابی سودمندی بررسی ها (دینگ و لیو، 2007)، شناسایی ویژگی های محصول مهم (ژانگ، 2008)، تشخیص بررسی کاذب (جیندال و لیو، 2007)، و به طور خلاصه محتوا بررسی شده را مورد مطالعه قرار دهند (ژوانگ، جینگ، و زو، 2006). با این حال، پژوهشی که وظیفه مدیریتی مرتبط بین رتبه بندی عددی و محتوای متنی این بررسی ها را پشتیبانی می کند به طور گسترده بدست نیامد؛ بنابراین، این مسئله که چگونه محتوای متنی این بررسی ها به رتبه بندی عددی کمک می کند به طور گسترده ای مورد خطاب قرار نگرفته است. درک این رابطه در مقادیر بالایی از داده های بررسی شده آنلاین می تواند به مدیران تجارت الکترونیک برای تصمیم گیری موثر در بخش مدیریت برند، ارتقاء محصول و مدیریت اعتبار کمک کند.
در این مقاله، در مورد آثار موجود در بخش تجزیه و تحلیل بررسی های محصول آنلاین بحث و گفتگو می کنیم و این رویکردهای موجود را به صورت انتقادی بررسی می کنیم. بدنبال الگوی علمی طراحی شده (هونیر، مارس، پارک، و رم، 2004)، چارچوب جدیدی برای طراحی دسته جدیدی از سیستم های BI ایجاد کردیم که محتوای متنی و رتبه بندی عددی بررسی های محصول آنلاین را به هم وابسته می کند. در مقایسه با علم رفتاری، الگوی علمی طراحی شده انتخاب شده است، چون که بر ایجاد و ارزیابی آثار ابتکاری که الزامات تجزیه و تحلیل مدیران تجارت الکترونیک، بازاریابان و متخصصین BI را مورد مخاطب قرار می دهد، تاکید می کند. در روند ایجاد مصنوعات مان، مبانی نظری و محاسباتی از داده کاوی (لیو، 2007؛ پاولاک، 1982) و بازیابی اطلاعات (ساللتون، 1989؛ ساللتون، وانگ، و یانگ، 1975) را مطرح می سازیم. بر اساس تئوری مجموعه های سخت و روش های استخراج قانون استقرایی به کار رفته در این چهارچوب، به عنوان نمونه ای از سیستم برای استخراج رابطه بین صدها رتبه بندی مشتری و بررسی های متنی مرتبط با وب سایت Amazon.com توسعه دادیم. برای نشان دادن عملکرد سیستم، دو روش داده کاوی برای استخراج قواعد تصمیم گیری خودکار به منظور درک درستی از این رابطه به اجرا در آمده است. با استفاده از آزمایش های کیفی و کمی، به طور تجربی سیستمی را آزمایش کردیم که تحت روش ها و تنظیمات مختلف پیکربندی شده بود. عملکرد افزایشی سیستم در طول انواع مختلفی از بررسی های آنلاین محصولات به اثبات رسیده است. این نتایج پیامدهای قوی در زمینه مدیریت نام تجاری و تجزیه و تحلیل تمایلات بازار آنلاین به همراه داشته است.