دانلود مقاله ISI انگلیسی شماره 79486
ترجمه فارسی عنوان مقاله

پیش بینی زمان سفر پویا با استفاده از خوشه بندی داده و برنامه نویسی ژنتیکی

عنوان انگلیسی
Dynamic travel time prediction using data clustering and genetic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79486 2014 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 42, May 2014, Pages 82–98

ترجمه کلمات کلیدی
پیش بینی زمان سفر؛ خوشه بندی؛ برنامه نویسی ژنتیک؛ نمونه برداری با جایگزینی؛ داده پروب
کلمات کلیدی انگلیسی
Travel time prediction; Clustering; Genetic programming; Sampling with replacement; Probe data
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی زمان سفر پویا با استفاده از خوشه بندی داده و برنامه نویسی ژنتیکی

چکیده انگلیسی

The current state-of-practice for predicting travel times assumes that the speeds along the various roadway segments remain constant over the duration of the trip. This approach produces large prediction errors, especially when the segment speeds vary temporally. In this paper, we develop a data clustering and genetic programming approach for modeling and predicting the expected, lower, and upper bounds of dynamic travel times along freeways. The models obtained from the genetic programming approach are algebraic expressions that provide insights into the spatiotemporal interactions. The use of an algebraic equation also means that the approach is computationally efficient and suitable for real-time applications. Our algorithm is tested on a 37-mile freeway section encompassing several bottlenecks. The prediction error is demonstrated to be significantly lower than that produced by the instantaneous algorithm and the historical average averaged over seven weekdays (p-value <0.0001). Specifically, the proposed algorithm achieves more than a 25% and 76% reduction in the prediction error over the instantaneous and historical average, respectively on congested days. When bagging is used in addition to the genetic programming, the results show that the mean width of the travel time interval is less than 5 min for the 60–80 min trip.