دانلود مقاله ISI انگلیسی شماره 79489
ترجمه فارسی عنوان مقاله

بررسی کنترل نفخ و نگهداری کد موثر در برنامه ریزی ژنتیک خطی برای رگرسیون نمادین

عنوان انگلیسی
Studying bloat control and maintenance of effective code in linear genetic programming for symbolic regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79489 2016 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 180, 5 March 2016, Pages 79–93

ترجمه کلمات کلیدی
کنترل نفخ، کد موثر، رگرسیون نمادین، برنامه نویسی ژنتیک خطی
کلمات کلیدی انگلیسی
Bloat control; Effective code; Symbolic regression; Linear genetic programming

چکیده انگلیسی

Linear Genetic Programming (LGP) is an Evolutionary Computation algorithm, inspired in the Genetic Programming (GP) algorithm. Instead of using the standard tree representation of GP, LGP evolves a linear program, which causes a graph-based data flow with code reuse. LGP has been shown to outperform GP in several problems, including Symbolic Regression (SReg), and to produce simpler solutions. In this paper, we propose several LGP variants and compare them with a traditional LGP algorithm on a set of benchmark SReg functions from the literature. The main objectives of the variants were to both control bloat and privilege useful code in the population. Here we evaluate their effects during the evolution process and in the quality of the final solutions. Analysis of the results showed that bloat control and effective code maintenance worked, but they did not guarantee improvement in solution quality.