دانلود مقاله ISI انگلیسی شماره 79494
ترجمه فارسی عنوان مقاله

پیش بینی مقاومت فشاری و کششی از سنگ آهک از طریق برنامه نویسی ژنتیک

عنوان انگلیسی
Prediction of compressive and tensile strength of limestone via genetic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79494 2008 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 35, Issues 1–2, July–August 2008, Pages 111–123

ترجمه کلمات کلیدی
برنامه نویسی ژنتیک؛ پیش بینی؛ سنگ آهک؛ مقاومت مصالح
کلمات کلیدی انگلیسی
Genetic programming; Prediction; Limestone; Strength of materials
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی مقاومت فشاری و کششی از سنگ آهک از طریق برنامه نویسی ژنتیک

چکیده انگلیسی

Accurate determination of compressive and tensile strength of limestone is an important subject for the design of geotechnical structures. Although there are several classical approaches in the literature for strength prediction their predictive accuracy is generally not satisfactory. The trend in the literature is to apply artificial intelligence based soft computing techniques for complex prediction problems. Artificial neural networks which are a member of soft computing techniques were applied to strength prediction of several types of rocks in the literature with considerable success. Although artificial neural networks are successful in prediction, their inability to explicitly produce prediction equations can create difficulty in practical circumstances. Another member of soft computing family which is known as genetic programming can be a very useful candidate to overcome this problem. Genetic programming based approaches are not yet applied to the strength prediction of limestone. This paper makes an attempt to apply a promising set of genetic programming techniques which are known as multi expression programming (MEP), gene expression programming (GEP) and linear genetic programming (LGP) to the uniaxial compressive strength (UCS) and tensile strength prediction of chalky and clayey soft limestone. The data for strength prediction were generated experimentally in the University of Gaziantep civil engineering laboratories by using limestone samples collected from Gaziantep region of Turkey.