دانلود مقاله ISI انگلیسی شماره 79498
ترجمه فارسی عنوان مقاله

طبقه بندی خطا با استفاده از برنامه نویسی ژنتیک

عنوان انگلیسی
Fault classification using genetic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79498 2007 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 21, Issue 3, April 2007, Pages 1273–1284

ترجمه کلمات کلیدی
برنامه نویسی ژنتیک؛ نظارت بر وضعیت؛ طبقه بندی چند طبقه - طبقه بندی خطا؛ بلبرینگ غلتکی
کلمات کلیدی انگلیسی
Genetic programming; Condition monitoring; Multi-class classification; Fault classification; Roller bearing
پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی خطا با استفاده از برنامه نویسی ژنتیک

چکیده انگلیسی

Genetic programming (GP) is a stochastic process for automatically generating computer programs. In this paper, three GP-based approaches for solving multi-class classification problems in roller bearing fault detection are proposed. Single-GP maps all the classes onto the one-dimensional GP output. Independent-GPs singles out each class separately by evolving a binary GP for each class independently. Bundled-GPs also has one binary GP for each class, but these GPs are evolved together with the aim of selecting as few features as possible. The classification results and the features each algorithm has selected are compared with genetic algorithm (GA) based approaches GA/ANN and GA/SVM. Experiments show that bundled-GPs is strong in feature selection while retaining high performance, which equals or outperforms the two previous GA-based approaches.