دانلود مقاله ISI انگلیسی شماره 79610
ترجمه فارسی عنوان مقاله

یک روش ترکیبی برای پیش بینی قیمت سهام با یکپارچه سازی نقشه خود سازماندهی و برنامه نویسی ژنتیکی

عنوان انگلیسی
A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79610 2011 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 11, October 2011, Pages 14026–14036

ترجمه کلمات کلیدی
پیش بینی قیمت سهام؛ نقشه خود-سازمان - برنامه نویسی ژنتیک
کلمات کلیدی انگلیسی
Stock price prediction; Self-organizing map; Genetic programming
پیش نمایش مقاله
پیش نمایش مقاله  یک روش ترکیبی برای پیش بینی قیمت سهام با یکپارچه سازی نقشه خود سازماندهی و برنامه نویسی ژنتیکی

چکیده انگلیسی

Stock price prediction is a very important financial topic, and is considered a challenging task and worthy of the considerable attention received from both researchers and practitioners. Stock price series have properties of high volatility, complexity, dynamics and turbulence, thus the implicit relationship between the stock price and predictors is quite dynamic. Hence, it is difficult to tackle the stock price prediction problems effectively by using only single soft computing technique. This study hybridizes a self-organizing map (SOM) neural network and genetic programming (GP) to develop an integrated procedure, namely, the SOM-GP procedure, in order to resolve problems inherent in stock price predictions. The SOM neural network is utilized to divide the sample data into several clusters, in such a manner that the objects within each cluster possess similar properties to each other, but differ from the objects in other clusters. The GP technique is applied to construct a mathematical prediction model that describes the functional relationship between technical indicators and the closing price of each cluster formed in the SOM neural network. The feasibility and effectiveness of the proposed hybrid SOM-GP prediction procedure are demonstrated through experiments aimed at predicting the finance and insurance sub-index of TAIEX (Taiwan stock exchange capitalization weighted stock index). Experimental results show that the proposed SOM-GP prediction procedure can be considered a feasible and effective tool for stock price predictions, as based on the overall prediction performance indices. Furthermore, it is found that the frequent and alternating rise and fall, as well as the range of daily closing prices during the period, significantly increase the difficulties of predicting.