دانلود مقاله ISI انگلیسی شماره 79645
ترجمه فارسی عنوان مقاله

GPF-CLASS: یک سیستم فازی ژنتیکی بر اساس برنامه نویسی ژنتیک برای مشکلات طبقه بندی

عنوان انگلیسی
GPFIS-CLASS: A Genetic Fuzzy System based on Genetic Programming for classification problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79645 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 37, December 2015, Pages 561–571

ترجمه کلمات کلیدی
سیستم فازی ژنتیک؛ تقسیم بندی؛ برنامه نویسی ژنتیک چند ژنی
کلمات کلیدی انگلیسی
Genetic Fuzzy System; Classification; Multi-Gene Genetic Programming
پیش نمایش مقاله
پیش نمایش مقاله  GPF-CLASS: یک سیستم فازی ژنتیکی بر اساس برنامه نویسی ژنتیک برای مشکلات طبقه بندی

چکیده انگلیسی

Genetic Fuzzy Systems (GFSs) are models capable of integrating accuracy and high comprehensibility in their results. In the case of GFSs for classification, more emphasis has been given to improving the “Genetic” component instead of its “Fuzzy” counterpart. This paper focus on the Fuzzy Inference component to obtain a more accurate and interpretable system, presenting the so-called Genetic Programming Fuzzy Inference System for Classification (GPFIS-CLASS). This model is based on Multi-Gene Genetic Programming and aims to explore the elements of a Fuzzy Inference System. GPFIS-CLASS has the following features: (i) it builds fuzzy rules premises employing t-norm, t-conorm, negation and linguistic hedge operators; (ii) it associates to each rule premise a suitable consequent term; and (iii) it improves the aggregation process by using a weighted mean computed by restricted least squares. It has been evaluated in two sets of benchmarks, comprising a total of 45 datasets, and has been compared with eight different classifiers, six of them based on GFSs. The results obtained in both sets demonstrate that GPFIS-CLASS provides better results for most benchmark datasets.