دانلود مقاله ISI انگلیسی شماره 79660
ترجمه فارسی عنوان مقاله

طراحی چند هدفه از توابع اجماع سلسله مراتبی برای خوشه بندی گروه از طریق برنامه نویسی ژنتیک

عنوان انگلیسی
Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79660 2011 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 51, Issue 4, November 2011, Pages 794–809

ترجمه کلمات کلیدی
آنالیز خوشه ای؛ گروه خوشه بندی؛ خوشه بندی چند هدفه؛ همجوشی سلسله مراتبی؛ انتخاب پارتیشن؛ برنامه نویسی ژنتیک
کلمات کلیدی انگلیسی
Cluster analysis; Clustering ensembles; Multi-objective clustering; Hierarchical fusion; Partition selection; Genetic programming
پیش نمایش مقاله
پیش نمایش مقاله  طراحی چند هدفه از توابع اجماع سلسله مراتبی برای خوشه بندی گروه از طریق برنامه نویسی ژنتیک

چکیده انگلیسی

This paper investigates a genetic programming (GP) approach aimed at the multi-objective design of hierarchical consensus functions for clustering ensembles. By this means, data partitions obtained via different clustering techniques can be continuously refined (via selection and merging) by a population of fusion hierarchies having complementary validation indices as objective functions. To assess the potential of the novel framework in terms of efficiency and effectiveness, a series of systematic experiments, involving eleven variants of the proposed GP-based algorithm and a comparison with basic as well as advanced clustering methods (of which some are clustering ensembles and/or multi-objective in nature), have been conducted on a number of artificial, benchmark and bioinformatics datasets. Overall, the results corroborate the perspective that having fusion hierarchies operating on well-chosen subsets of data partitions is a fine strategy that may yield significant gains in terms of clustering robustness.