دانلود مقاله ISI انگلیسی شماره 79681
ترجمه فارسی عنوان مقاله

شناسایی مدلهای سطح پاسخ با استفاده از برنامه نویسی ژنتیک

عنوان انگلیسی
Identification of response surface models using genetic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79681 2006 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 20, Issue 8, November 2006, Pages 1819–1831

ترجمه کلمات کلیدی
مدل Surrogate/replacement؛ از مدلهای سطح پاسخ؛ رگرسیون نمادین؛ برنامه نویسی ژنتیک
کلمات کلیدی انگلیسی
Surrogate/replacement model; Response surface models; Symbolic regression; Genetic programming
پیش نمایش مقاله
پیش نمایش مقاله  شناسایی مدلهای سطح پاسخ با استفاده از برنامه نویسی ژنتیک

چکیده انگلیسی

There is a move in modern research in Structural Dynamics towards analysing the inherent uncertainty in a given problem. This may be quantifying or fusing uncertainty models, or can be propagation of uncertainty through a system or calculation. If the system of interest is represented by, e.g. a large Finite Element (FE) model the large number of computations involved can rule out many approaches due to the expense of carrying out many runs. One way of circumnavigating this problem is to replace the true system by an approximate surrogate/replacement model, which is fast-running compared to the original. In traditional approaches using response surfaces a simple least-squares multinomial model is often adopted. The objective of this paper is to extend the class of possible models considerably by carrying out a general symbolic regression using a Genetic Programming approach. The approach is demonstrated on both univariate and multivariate problems with both computational and experimental data.