دانلود مقاله ISI انگلیسی شماره 79713
ترجمه فارسی عنوان مقاله

یک روش برنامه ریزی ژنتیکی چند هدفه در حال توسعه درختان تصمیم گیری بهینه پارتو

عنوان انگلیسی
A multi-objective genetic programming approach to developing Pareto optimal decision trees
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79713 2007 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 43, Issue 3, April 2007, Pages 809–826

ترجمه کلمات کلیدی
داده کاوی؛ طبقه بندی دودویی؛ درخت تصمیم گیری؛ طبقه بندی حساس به هزینه - برنامه نویسی ژنتیک؛ بهینه سازی چند هدفه؛ بهینه پارتو
کلمات کلیدی انگلیسی
Data mining; Binary classification; Decision tree; Cost-sensitive classification; Genetic programming; Multi-objective optimization; Pareto optimality
پیش نمایش مقاله
پیش نمایش مقاله  یک روش برنامه ریزی ژنتیکی چند هدفه در حال توسعه درختان تصمیم گیری بهینه پارتو

چکیده انگلیسی

Classification is a frequently encountered data mining problem. Decision tree techniques have been widely used to build classification models as such models closely resemble human reasoning and are easy to understand. Many real-world classification problems are cost-sensitive, meaning that different types of misclassification errors are not equally costly. Since different decision trees may excel under different cost settings, a set of non-dominated decision trees should be developed and presented to the decision maker for consideration, if the costs of different types of misclassification errors are not precisely determined. This paper proposes a multi-objective genetic programming approach to developing such alternative Pareto optimal decision trees. It also allows the decision maker to specify partial preferences on the conflicting objectives, such as false negative vs. false positive, sensitivity vs. specificity, and recall vs. precision, to further reduce the number of alternative solutions. A diabetes prediction problem and a credit card application approval problem are used to illustrate the application of the proposed approach.