دانلود مقاله ISI انگلیسی شماره 79714
ترجمه فارسی عنوان مقاله

پیش بینی ماهانه تقاضای آب شهری با استفاده از فیلتر کالمن تمدید شده و برنامه نویسی ژنتیک

عنوان انگلیسی
Forecasting monthly urban water demand using Extended Kalman Filter and Genetic Programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79714 2011 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 6, June 2011, Pages 7387–7395

ترجمه کلمات کلیدی
پیش بینی؛ تقاضای آب ماهانه؛ برنامه نویسی ژنتیک (GP)؛ فیلتر کالمن تمدید شده(EKF)؛ جذب اطلاعات
کلمات کلیدی انگلیسی
Forecasting; Monthly water demand; Genetic programming (GP); Extended Kalman Filter (EKF); Data assimilation
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی ماهانه تقاضای آب شهری با استفاده از فیلتر کالمن تمدید شده و برنامه نویسی ژنتیک

چکیده انگلیسی

In this paper, a hybrid model which combines Extended Kalman Filter (EKF) and Genetic Programming (GP) for forecasting of water demand in Tehran is developed. The initial goal of the current work is forecasting monthly water demand using GP for achieving an explicit optimum formula. In the proposed model, the EKF is applied to infer latent variables in order to make a forecasting based on GP results of water demand. The available dataset includes monthly water consumption of Tehran, the capital of Iran, from 1992 to 2002. Five best formulas based on GP results on this dataset are presented. In these models, the first five to three lags of observed water demand are used as probable and independent inputs. For each model, sensitivity of the results for each input is measured mathematically. A model with the most compatibility of the computed versus the observed water demand is used for filtering based on EKF method. Results of GP and hybrid models of EKFGP demonstrate the visible effect of observation precision on water demand prediction. These results can help decision makers of water resources to reduce their risks of online water demand forecasting and optimal operation of urban water systems.