دانلود مقاله ISI انگلیسی شماره 79723
ترجمه فارسی عنوان مقاله

رتبه بندی غیر خطی بازنمایی تابع در رتبه بندی کشف مبتنی بر برنامه نویسی ژنتیک برای جستجوی شخصی

عنوان انگلیسی
Nonlinear ranking function representations in genetic programming-based ranking discovery for personalized search
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79723 2006 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 42, Issue 3, December 2006, Pages 1338–1349

ترجمه کلمات کلیدی
اطلاعات مسیر یابی؛ بازیابی اطلاعات؛ برنامه نویسی ژنتیک؛ تابع رتبه بندی
کلمات کلیدی انگلیسی
Information routing; Information retrieval; Genetic programming; Ranking function
پیش نمایش مقاله
پیش نمایش مقاله  رتبه بندی غیر خطی بازنمایی تابع در رتبه بندی کشف مبتنی بر برنامه نویسی ژنتیک برای جستجوی شخصی

چکیده انگلیسی

Ranking function is instrumental in affecting the performance of a search engine. Designing and optimizing a search engine's ranking function remains a daunting task for computer and information scientists. Recently, genetic programming (GP), a machine learning technique based on evolutionary theory, has shown promise in tackling this very difficult problem. Ranking functions discovered by GP have been found to be significantly better than many of the other existing ranking functions. However, current GP implementations for ranking function discovery are all designed utilizing the Vector Space model in which the same term weighting strategy is applied to all terms in a document. This may not be an ideal representation scheme at the individual query level considering the fact that many query terms should play different roles in the final ranking. In this paper, we propose a novel nonlinear ranking function representation scheme and compare this new design to the well-known Vector Space model. We theoretically show that the new representation scheme subsumes the traditional Vector Space model representation scheme as a special case and hence allows for additional flexibility in term weighting. We test the new representation scheme with the GP-based discovery framework in a personalized search (information routing) context using a TREC web corpus. The experimental results show that the new ranking function representation design outperforms the traditional Vector Space model for GP-based ranking function discovery.