دانلود مقاله ISI انگلیسی شماره 79725
ترجمه فارسی عنوان مقاله

برنامه نویسی ژنتیکی مبتنی بر کد ماشین برای برآورد غلظت رسوب معلق

عنوان انگلیسی
A machine code-based genetic programming for suspended sediment concentration estimation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79725 2010 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advances in Engineering Software, Volume 41, Issues 7–8, July–August 2010, Pages 939–945

ترجمه کلمات کلیدی
غلظت رسوبات معلق؛ مدل سازی؛ برنامه نویسی ژنتیک خطی؛ Neuro-فازی؛ شبکه های عصبی؛ منحنی امتیاز
کلمات کلیدی انگلیسی
Suspended sediment concentration; Modeling; Linear genetic programming; Neuro-fuzzy; Neural networks; Rating curve
پیش نمایش مقاله
پیش نمایش مقاله  برنامه نویسی ژنتیکی مبتنی بر کد ماشین برای برآورد غلظت رسوب معلق

چکیده انگلیسی

Correct estimation of suspended sediment concentration carried by a river is very important for many water resources projects. The application of linear genetic programming (LGP), which is an extension to genetic programming (GP) technique, for suspended sediment concentration estimation is proposed in this paper. The LGP is compared with those of the adaptive neuro-fuzzy, neural networks and rating curve models. The daily streamflow and suspended sediment concentration data from two stations, Rio Valenciano Station and Quebrada Blanca Station, operated by the US Geological Survey (USGS) are used as case studies. The root mean square errors (RMSE) and determination coefficient (R2) statistics are used for evaluating the accuracy of the models. Comparison of the results indicated that the LGP performs better than the neuro-fuzzy, neural networks and rating curve models. For the Rio Valenciano and Quebrada Blanca Stations, it is found that the LGP models with RMSE = 44.4 mg/l, R2 = 0.910 and RMSE = 13.9 mg/l, R2 = 0.952 in test period is superior in estimating daily suspended sediment concentrations than the best accurate neuro-fuzzy model with RMSE = 52.0 mg/l, R2 = 0.876 and RMSE = 17.9 mg/l, R2 = 0.929, respectively.