دانلود مقاله ISI انگلیسی شماره 79729
ترجمه فارسی عنوان مقاله

تشخیص سرطان سینه با استفاده از قابلیت های برنامه نویسی ژنتیکی تولید شده

عنوان انگلیسی
Breast cancer diagnosis using genetic programming generated feature
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79729 2006 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 39, Issue 5, May 2006, Pages 980–987

ترجمه کلمات کلیدی
استخراج ویژگی؛ برنامه نویسی ژنتیک؛ تجزیه و تحلیل تفکیک فیشر؛ الگو شناسی
کلمات کلیدی انگلیسی
Feature extraction; Genetic programming; Fisher discriminant analysis; Pattern recognition
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص سرطان سینه با استفاده از قابلیت های برنامه نویسی ژنتیکی تولید شده

چکیده انگلیسی

This paper proposes a novel method for breast cancer diagnosis using the feature generated by genetic programming (GP). We developed a new feature extraction measure (modified Fisher linear discriminant analysis (MFLDA)) to overcome the limitation of Fisher criterion. GP as an evolutionary mechanism provides a training structure to generate features. A modified Fisher criterion is developed to help GP optimize features that allow pattern vectors belonging to different categories to distribute compactly and disjoint regions. First, the MFLDA is experimentally compared with some classical feature extraction methods (principal component analysis, Fisher linear discriminant analysis, alternative Fisher linear discriminant analysis). Second, the feature generated by GP based on the modified Fisher criterion is compared with the features generated by GP using Fisher criterion and an alternative Fisher criterion in terms of the classification performance. The classification is carried out by a simple classifier (minimum distance classifier). Finally, the same feature generated by GP is compared with a original feature set as the inputs to multi-layer perceptrons and support vector machine. Results demonstrate the capability of this method to transform information from high-dimensional feature space into one-dimensional space and automatically discover the relationship among data, to improve classification accuracy.