دانلود مقاله ISI انگلیسی شماره 79740
ترجمه فارسی عنوان مقاله

برنامه نویسی پویا تصادفی برای حل مشکلات برنامه ریزی در مقیاس بزرگ تحت عدم قطعیت ☆

عنوان انگلیسی
On stochastic dynamic programming for solving large-scale planning problems under uncertainty ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79740 2009 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 36, Issue 8, August 2009, Pages 2418–2428

ترجمه کلمات کلیدی
برنامه نویسی تصادفی پویا، درخت سناریو؛ مدل 0-1 مخلوط؛ برنامه ریزی تولید Tactical
کلمات کلیدی انگلیسی
Stochastic dynamic programming; Scenario tree; Mixed 0–1 model; Tactical production planning
پیش نمایش مقاله
پیش نمایش مقاله  برنامه نویسی پویا تصادفی برای حل مشکلات برنامه ریزی در مقیاس بزرگ تحت عدم قطعیت ☆

چکیده انگلیسی

For quite some time, we have known that traditional methods of deterministic optimization are not suitable to capture the truly dynamic nature of most real-life problems, in view of the fact that the parameters which represent information concerning the future are uncertain. Many of the problems in planning under uncertainty, have logical constraints that require 0–1 variables in their formulation and can be solved via stochastic integer programming using scenario tree analysis. Given the dimensions of the deterministic equivalent model (DEM) of the stochastic problem, certain decomposition approaches can be considered by exploiting the structure of the models. Traditional decomposition schemes, such as the Benders and Lagrangean approaches, do not appear to provide the solution for large-scale problems (mainly in the cardinality of the scenario tree) in affordable computing effort. In this work, a stochastic dynamic programming approach is suggested, which we feel is particularly suited to exploit the scenario tree structure and, therefore, very amenable to finding solutions to very large-scale DEMs. The pilot case used involves a classical tactical production planning problem, where the structure is not exploited by the proposed approach so that it is generally applicable.