دانلود مقاله ISI انگلیسی شماره 82217
ترجمه فارسی عنوان مقاله

محاسبه میانگین متحرک حرکتی بازار آتی نفت خام بر اساس قوانین منطق فازی و الگوریتم های ژنتیکی

عنوان انگلیسی
Quantified moving average strategy of crude oil futures market based on fuzzy logic rules and genetic algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
82217 2017 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 482, 15 September 2017, Pages 444-457

ترجمه کلمات کلیدی
استراتژی متوسط ​​متحرک، قوانین منطق فازی، الگوریتم ژنتیک، تجزیه و تحلیل فنی، قانون تجارت
کلمات کلیدی انگلیسی
Moving average strategy; Fuzzy logic rules; Genetic algorithms; Technical analysis; Trading rule;
پیش نمایش مقاله
پیش نمایش مقاله  محاسبه میانگین متحرک حرکتی بازار آتی نفت خام بر اساس قوانین منطق فازی و الگوریتم های ژنتیکی

چکیده انگلیسی

The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.