دانلود مقاله ISI انگلیسی شماره 82754
ترجمه فارسی عنوان مقاله

الگوریتم تخصیص اسلک برای کمینه کردن انرژی در سیستم خوشه ای

عنوان انگلیسی
Slack allocation algorithm for energy minimization in cluster systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
82754 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 74, September 2017, Pages 119-131

ترجمه کلمات کلیدی
محاسبات خوشه، نمودار آسیلیک هدایت شده، مقیاس ولتاژ / فرکانس پویا، انرژی برنامه ریزی آگاهانه، توافقنامه سطح خدمات،
کلمات کلیدی انگلیسی
Cluster computing; Directed acyclic graph; Dynamic voltage/frequency scaling; Energy aware scheduling; Service level agreement;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تخصیص اسلک برای کمینه کردن انرژی در سیستم خوشه ای

چکیده انگلیسی

Energy consumption has been a critical issue in high-performance computing systems, such as clusters and data centers. An existing technique to reduce energy consumption of applications is dynamic voltage/frequency scaling (DVFS). In this paper, we present a novel algorithm called EASLA for energy aware scheduling of precedence-constrained applications in the context of Service Level Agreement (SLA) on DVFS-enabled cluster systems. Due to the dependencies among tasks and makespan extension, there may be some underused slacks. The main idea of the EASLA algorithm is to distribute each slack to a set of tasks and scale frequencies down to try to minimize energy consumption. Specifically, it first finds the maximum set of independent tasks for each task, and then iteratively allocates each slack to the maximum independent set whose total energy reduction is the maximal. Randomly generated graphs and two real-world applications are tested in our experiments. The experimental results show that our scheduling algorithm can save up to 22.68% and 12.01% energy consumption compared with the GreedyDVS and EvenlyDVS algorithms respectively in homogeneous environments, and 12.33% energy consumption compared with the EES algorithm in heterogeneous environments.