دانلود مقاله ISI انگلیسی شماره 92967
ترجمه فارسی عنوان مقاله

بهینه سازی مستعمرات مورچه ای قوی برای توابع مداوم

عنوان انگلیسی
A robust ant colony optimization for continuous functions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92967 2017 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 81, 15 September 2017, Pages 309-320

ترجمه کلمات کلیدی
جستجو گسترده الگوریتم کلونی مورچه، بهینه سازی مداوم، نیرومندی،
کلمات کلیدی انگلیسی
Broad-range search; Ant colony algorithm; Continuous optimization; Robustness;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی مستعمرات مورچه ای قوی برای توابع مداوم

چکیده انگلیسی

Ant colony optimization (ACO) for continuous functions has been widely applied in recent years in different areas of expert and intelligent systems, such as steganography in medical systems, modelling signal strength distribution in communication systems, and water resources management systems. For these problems that have been addressed previously, the optimal solutions were known a priori and contained in the pre-specified initial domains. However, for practical problems in expert and intelligent systems, the optimal solutions are often not known beforehand. In this paper, we propose a robust ant colony optimization for continuous functions (RACO), which is robust to domains of variables. RACO applies self-adaptive approaches in terms of domain adjustment, pheromone increment, domain division, and ant size without any major conceptual change to ACO's framework. These new characteristics make the search of ants not limited to the given initial domain, but extended to a completely different domain. In the case of initial domains without the optimal solution, RACO can still obtain the correct result no matter how the initial domains vary. In the case of initial domains with the optimal solution, we also show that RACO is a competitive algorithm. With the assistance of RACO, there is no need to estimate proper initial domains for practical continuous optimization problems in expert and intelligent systems.