دانلود مقاله ISI انگلیسی شماره 9751
ترجمه فارسی عنوان مقاله

بررسی بهره وری شعب بانکی میان منطقه ای با استفاده از تحلیل پوششی داده های فازی

عنوان انگلیسی
Efficiency analysis of cross-region bank branches using fuzzy data envelopment analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
9751 2006 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematics and Computation, 181 (2006) 271–281

فهرست مطالب ترجمه فارسی

چکیده

1.مقدمه

2. مدل ها و روش

2.1. مدل DEA

2.2. مدل DEA فازی

2.3. مدل مفهومی

3.نتایج و مباحث

3.1. داده های خام

3.2. نتیجه DEA عادی

3.3. نتیجه DEA فازی

3.4 بازده درون استانی

4. نتیجه گیری
ترجمه کلمات کلیدی
تجزیه و تحلیل پوششی داده ها - مجموعه های فازی - بازده - بانک
کلمات کلیدی انگلیسی
Data envelopment analysis,Fuzzy sets,Efficiency,Bank,
ترجمه چکیده
در اقتصاد و جامعه امروز ، تجزیه و تحلیل عملکرد در صنایع خدمات، توجه بیشتر و بیشتری را بخود اختصاص میدهد .روش سنتی تجزیه و تحلیل پوششی داده ها (DEA)، نیاز به یک محیط عامل سازگار دارد . با این حال، در واقع، نیاز به ارزیابی واحد های متعلق به محیط های مختلف وجود دارد که این واقعیت روش های سنتی رابه استفاده از نظریه DEA در دنیای واقعی به چالش می کشد که در آن تعیین معیار در سراسر منطقه می تواند یک کار بسیار مهم باشد . این مقاله منطق فازی را به فرمول DEA برای مقابله با متغیرهای محیطی معرفی میکند به طوری که عملکرد شعب بانک از مناطق مختلف را می توان ارزیابی کرد . مقایسه درون استانی و بین استانی بر اساس نتایج DEA فازی داده شده است. این نتایج با نتایج حاصل از تجزیه و تحلیل DEA سنتی مقایسه شده اند
ترجمه مقدمه
صنعت بانکداری برای هر یک از ما از اهمیت زیادی برخوردار است . با در دسترس بودن فن آوری های جدید و اینترنت، سازمان های بیشتر و بیشتری در حال ورود به برخی از جنبه های کسب و کار بانکی هستند و این نتایج در رقابت شدید در بازار خدمات مالی قرار دارد . بانک های عمده داخلی همچنان به دنبال فرصت های موجود به منظور افزایش رقابت خود میباشند . در نتیجه، تجزیه و تحلیل عملکرد در صنعت بانکداری به بخشی از شیوه های مدیریت آنها تبدیل شده است. مدیریت های برتر بانکی خواهان شناسایی و از بین بردن علل ناکارآمدی و در نتیجه کمک به شرکت های خود برای به دست آوردن مزیت رقابتی، یا، حداقل، دیدار با چالش ها ی دیگران هستند . به طور سنتی، بانک ها در مورد اقدامات مختلف سود دهی برای ارزیابی عملکرد خود متمرکز اند
پیش نمایش مقاله
پیش نمایش مقاله  بررسی بهره وری شعب بانکی میان منطقه ای با استفاده از تحلیل پوششی داده های فازی

چکیده انگلیسی

In today’s economy and society, performance analyses in the services industries attract more and more attention. The traditional data envelopment analysis (DEA) approach requires a consistent operating environment. However, in reality, there is a need to evaluate the units belonging to different environment. This reality challenges the traditional methods of applying DEA theory to real-world cases where benchmarking across region can be a very important undertaking. This paper introduces the fuzzy logic into DEA formulation to deal with the environmental variables so that the performance of bank branches from different regions can be assessed. The inner-province and inter-province comparison are given based on the fuzzy DEA results. These results are also compared with the results from traditional DEA analysis.

مقدمه انگلیسی

The banking industry is of great importance to every one of us. With the availability of new technology and the Internet, more and more organizations are entering some aspect of the banking business and this results in intense competition in the financial services markets. Major domestic banks continue to pursue all the opportunities available to enhance their competitiveness. Consequently, performance analysis in the banking industry has become part of their management practices. Top bank management wants to identify and eliminate the underlying causes of inefficiencies, thus helping their firms to gain competitive advantage, or, at least, meet the challenges from others. Traditionally, banks have focused on various profitability measures to evaluate their performance. Usually multiple ratios are selected to focus on the different aspects of the operations. However, ratio analysis provides relatively insignificant amount of information when considering the effects of economies of scale, the identification of benchmarking policies, and the estimation of overall performance measures of firms. Asalternatives to traditional bank management tools, frontier efficiency analyses allow management to objectively identify best practices in complex operational environments. Five different approaches, namely, data envelopment analysis (DEA) as[1–4] etc., free disposal hull (FDH) as in [5,6], stochastic frontier approach (SFA), also called econometric frontier approach (EFA) as in [7–9], thick frontier approach (TFA) as in [10–12], and distribution free approach (DFA) as in [13–15], have been reported in the literature as methods to evaluate bank efficiency. These approaches primarily differ in how much restriction is imposed on the specification of the best practice frontier and the assumption on random error and inefficiency. Compared to other approaches, DEA is a better way to organize and analyze data since it allows efficiency to change over time and requires no prior assumption on the specification of the best practice frontier. Thus, DEA is a leading approach for the performance analysis in banking industry in literature. However, the traditional DEA analysis requires a consistent infrastructure and operating environment in which the entities, appropriately called decision making units (DMUs), operate. In reality there is a need to compare DMUs where some units may have a different environment which the others cannot adopt; hence, the comparisons are not always fair. This reality challenges the traditional methods of applying DEA theory to real-world cases. Banker and Morey [16] introduced categorical inputs and outputs and their development rests on the assumption that there is a natural nesting or hierarchy of categories. The same authors [17] had also dealt with the relative technical and scale efficiencies of decision making units when some of the inputs or outputs are exogenously fixed and beyond the discretionary control of the DMU managers. Cooper et al. [18] introduced a method to do the cross-system comparison. They make use of mixed integer LP (linear programming) problem with binary variables to evaluate DMUs in different systems. The proposed mixed integer LP is solved by an algorithm where the units of one subsystem are evaluated relative to frontier based on the other subsystem. This is related to the super-efficiency proposed by Andersen and Petersen [19]. Similar to the hurdle of super-efficiency DEA, the infeasible problem often occurs when using BCC model to do cross-system comparison. As a result, the treatment offered by Cooper et al.’s cannot be applied if we need to estimate the production frontier using a variable returns to scale (VRS) technology and separate the scale effect from productivity changes [20]. Furthermore, Lozano-Vivas et al. [21] incorporate the environmental variables directly into the ‘‘basic’’ DEA model since adding variables to the DEA model raises the efficiency scores. Their method of adding each environmental factor guarantees that only the efficiency scores of DMUs with bad environmental conditions can change. This approach has a pre-requisite: they must know in advance the type of influence of each environmental variable on the efficiency scores. In other words, each uncontrolled factor must have an influence of know orientation. This paper introduces the fuzzy logic into DEA formulation to deal with the environmental variables so that the performance of bank branches from different regions can be assessed. This approach can deal with both quantitative and qualitative or linguistic environmental variables. In our formulation the environmental variables serve as linking measures across different subsystems so that cross-region comparison can be done. To deal with evaluation among different systems, our methodology provides an alternative to build BCC model, which is a hurdle of Cooper et al. [18]. Our proposed fuzzy models are based upon the formulations of Lertworasirikul et al. [22]. However, it differs from theirs by incorporating both crisp and fuzzy variables in the models. Our fuzzy CCR model shows the powerful discriminating power, which is the main concern in Lertworasirikul et al. [22]. The rest of the paper is organized as follows. Section 2 presents the fuzzy data envelopment analysis (DEA) as well as the conceptual models. Section 3 gives the fuzzy DEA results and further discussion. Finally, our conclusions and future work are presented in Section 4.

نتیجه گیری انگلیسی

The main objective of this paper is to apply the fuzzy DEA models to deal with the environmental variables so that the cross-region comparison is possible. In our formulation the environmental variables serve as linking measures across different subsystems in order to perform a cross-region comparison. To deal with evaluation among different systems, our methodology provides an alternative to build BCC model, which is a hurdle of previous work by Cooper et al. [18]. Although our proposed fuzzy models are built upon the formulations of Lertworasirikul et al. [22], it differs by incorporating both crisp and fuzzy variables in the models. Our fuzzy CCR model shows the powerful discriminating power, the main concern in [22]. Further consideration could be done by incorporating DEA and data mining techniques