دانلود مقاله ISI انگلیسی شماره 124392
ترجمه فارسی عنوان مقاله

افزایش ویژگی های بیزی با استفاده از تجزیه و تحلیل بردار مستقل و برآورد پارامترهای بازتعریف برای تشخیص گفتار نویز پر سر و صدا

عنوان انگلیسی
Bayesian feature enhancement using independent vector analysis and reverberation parameter re-estimation for noisy reverberant speech recognition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
124392 2017 51 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Speech & Language, Volume 46, November 2017, Pages 496-516

ترجمه کلمات کلیدی
شناسایی قوی سخنرانی، افزایش ویژگی، استنتاج بیزی، تجزیه و تحلیل مستقل بردار، بازتاب مدل مخفی مارکف،
کلمات کلیدی انگلیسی
Robust speech recognition; Feature enhancement; Bayesian inference; Independent vector analysis; Reverberation; Hidden Markov model;
پیش نمایش مقاله
پیش نمایش مقاله  افزایش ویژگی های بیزی با استفاده از تجزیه و تحلیل بردار مستقل و برآورد پارامترهای بازتعریف برای تشخیص گفتار نویز پر سر و صدا

چکیده انگلیسی

Because speech recorded by distant microphones in real-world environments is contaminated by both additive noise and reverberation, the automatic speech recognition (ASR) performance is seriously degraded due to the mismatch between the training and testing environments. In the previous studies, some of the authors proposed a Bayesian feature enhancement (BFE) method with re-estimation of reverberation filter parameters for reverberant speech recognition and a BFE method employing independent vector analysis (IVA) to deal with speech corrupted by additive noise. Although both of them accomplish significant improvements in either reverberation- or noise-robust ASR, most of the real-world environments involve both additive noise and reverberation. For robust ASR in the noisy reverberant environments, in this paper, we present a hidden-Markov-model (HMM)-based BFE method using IVA and reverberation parameter re-estimation (RPR) to remove additive and reverberant distortion components in speech acquired by multi-microphones effectively by introducing Bayesian inference in the observation model of input speech features. Experimental results show that the presented method can further reduce the word error rates (WERs) compared with the BFE methods based on conventional noise and/or reverberation models and combinations of the BFE methods for reverberation- or noise-robust ASR.