دانلود مقاله ISI انگلیسی شماره 124413
ترجمه فارسی عنوان مقاله

تقویت گفتار برای تشخیص گفتار خودکار: ارزیابی با استفاده از یک سیستم پایه و اقدامات سازمانی

عنوان انگلیسی
Speech enhancement for robust automatic speech recognition: Evaluation using a baseline system and instrumental measures
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
124413 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Speech & Language, Volume 46, November 2017, Pages 574-584

پیش نمایش مقاله
پیش نمایش مقاله  تقویت گفتار برای تشخیص گفتار خودکار: ارزیابی با استفاده از یک سیستم پایه و اقدامات سازمانی

چکیده انگلیسی

Automatic speech recognition in everyday environments must be robust to significant levels of reverberation and noise. One strategy to achieve such robustness is multi-microphone speech enhancement. In this study, we present results of an evaluation of different speech enhancement pipelines using a state-of-the-art ASR system for a wide range of reverberation and noise conditions. The evaluation exploits the recently released ACE Challenge database which includes measured multichannel acoustic impulse responses from 7 different rooms with reverberation times ranging from 0.33 to 1.34 s. The reverberant speech is mixed with ambient, fan and babble noise recordings made with the same microphone setups in each of the rooms. In the first experiment, performance of the ASR without speech processing is evaluated. Results clearly indicate the deleterious effect of both noise and reverberation. In the second experiment, different speech enhancement pipelines are evaluated with relative word error rate reductions of up to 82%. Finally, the ability of selected instrumental metrics to predict ASR performance improvement is assessed. The best performing metric, Short-Time Objective Intelligibility Measure, is shown to have a Pearson correlation coefficient of 0.79, suggesting that it is a useful predictor of algorithm performance in these tests.