دانلود مقاله ISI انگلیسی شماره 124422
ترجمه فارسی عنوان مقاله

به دست آوردن لغت مکانی فضایی بدون نظارت با به روز رسانی یک مدل زبان با سرنخ های مکان

عنوان انگلیسی
Unsupervised spatial lexical acquisition by updating a language model with place clues
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
124422 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Robotics and Autonomous Systems, Volume 99, January 2018, Pages 166-180

ترجمه کلمات کلیدی
تشخیص گفتاری غیرمستقیم، غیر پارامترهای بیزی، کسب لکسیک، طبقه بندی محل، خرید مفهوم فضایی، تقسیم کلمه بدون نظارت،
کلمات کلیدی انگلیسی
Ambiguous speech recognition; Bayesian nonparametrics; Lexical acquisition; Place categorization; Spatial concept acquisition; Unsupervised word segmentation;
پیش نمایش مقاله
پیش نمایش مقاله  به دست آوردن لغت مکانی فضایی بدون نظارت با به روز رسانی یک مدل زبان با سرنخ های مکان

چکیده انگلیسی

This paper describes how to achieve highly accurate unsupervised spatial lexical acquisition from speech-recognition results including phoneme recognition errors. In most research into lexical acquisition, the robot has no pre-existing lexical knowledge. The robot acquires sequences of some phonemes as words from continuous speech signals. In a previous study, we proposed a nonparametric Bayesian spatial concept acquisition method (SpCoA) that integrates the robot’s position and words obtained by unsupervised word segmentation from uncertain syllable recognition results. However, SpCoA has a very critical problem to be solved in lexical acquisition; the boundaries of word segmentation are incorrect in many cases because of many phoneme recognition errors. Therefore, we propose an unsupervised machine learning method (SpCoA++) for the robust lexical acquisition of novel words relating to places visited by the robot. The proposed SpCoA++ method performs an iterative estimation of learning spatial concepts and updating a language model using place information. SpCoA++ can select a candidate including many words that better represent places from multiple word-segmentation results by maximizing the mutual information between segmented words and spatial concepts. The experimental results demonstrate a significant improvement of the phoneme accuracy rate of learned words relating to place in the proposed method by word-segmentation results based on place information, in comparison to the conventional methods. We indicate that the proposed method enables the robot to acquire words from speech signals more accurately, and improves the estimation accuracy of the spatial concepts.