دانلود مقاله ISI انگلیسی شماره 129636
ترجمه فارسی عنوان مقاله

یک مدل رگرسیون وزن جغرافیایی گسترده روابط پیاده روی محیطی

عنوان انگلیسی
A massive geographically weighted regression model of walking-environment relationships
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
129636 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Transport Geography, Volume 68, April 2018, Pages 118-129

پیش نمایش مقاله
پیش نمایش مقاله  یک مدل رگرسیون وزن جغرافیایی گسترده روابط پیاده روی محیطی

چکیده انگلیسی

Many studies aim at identifying environmental correlates of walking in order to identify specific potential levers for tackling the medical burden of physical inactivity. The links between environmental characteristics and walking behaviors are usually context specific. While local studies fail to embrace a global overview of these contexts, global studies hide the context scale patterns. In this study, we applied a geographically weighted logistic regression (GWR) on a large area (whole of France) to explore spatial variations of the relations between five environmental variables and walking for leisure and errands purposes among 40,480 French adults. This approach allowed us to adopt a global view of local patterns of relations and to highlight spatial contexts (defined through a clustering of GWR odds ratios) where combinations of correlates varied. Specifically, clustering algorithms on the GWR odds ratios led to 9 and 6 clusters for walking for leisure and errands, respectively. Some clusters were characterized by a particularly strong effect of population density, whereas others exhibited low effect of vegetation cover rate. Chi-squared tests indicated that these clusters were associated with type of urban areas (Paris, major urban poles, periurban areas, small urban poles, isolated areas) for the two types of walking. Beyond its methodological contribution - providing a method to handle large data samples into GWR analyses - this study offers key elements to practitioners and policy makers to target relevant contexts and environmental features for promoting daily walking.