دانلود مقاله ISI انگلیسی شماره 138020
ترجمه فارسی عنوان مقاله

الگوریتم هوشمند و تکاملی: عملکرد در مقابل سرعت

عنوان انگلیسی
Swarm Intelligence and Evolutionary Algorithms: Performance versus speed
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138020 2017 71 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 384, April 2017, Pages 34-85

ترجمه کلمات کلیدی
سرعت همگرایی، الگوریتم ژنتیک، تکامل دیفرانسیل، بهینه سازی ذرات ذرات، بهینه سازی مبتنی بر بیوگرافی، روش جستجوی مستقیم،
کلمات کلیدی انگلیسی
Convergence speed; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization; Biogeography-based optimization; Direct Search method;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم هوشمند و تکاملی: عملکرد در مقابل سرعت

چکیده انگلیسی

In this study the performance of 33 various metaheuristics proposed between 1960 and 2016 have been tested on 22 numerical real-world problems from different fields of science, with the maximum number of function calls varying between 5000 and 500,000. It is confirmed that the algorithms that succeed in comparisons when the computational budget is low are among the poorest performers when the computational budget is high, and vice versa. Among the tested variants, Particle Swarm Optimization algorithms and some new types of metaheuristics perform relatively better when the number of allowed function calls is low, whereas Differential Evolution and Genetic Algorithms perform better relative to other algorithms when the computational budget is large. It is difficult to find any metaheuristic that would perform adequately over all of the numbers of function calls tested. It was also found that some algorithms may become completely unreliable on specific real-world problems, even though they perform reasonably on others.