دانلود مقاله ISI انگلیسی شماره 138088
ترجمه فارسی عنوان مقاله

بهینه سازی ذرات ذره بین یادگیری دیفرانسیل چند درهم

عنوان انگلیسی
Dynamic multi-swarm differential learning particle swarm optimizer
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138088 2018 37 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Swarm and Evolutionary Computation, Volume 39, April 2018, Pages 209-221

ترجمه کلمات کلیدی
هوشافزاری بهینه سازی ذرات ذرات، پویایی زیر سحابی، جهش دیفرانسیل،
کلمات کلیدی انگلیسی
Swarm intelligence; Particle swarm optimization; Dynamic sub-swarms; Differential mutation;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی ذرات ذره بین یادگیری دیفرانسیل چند درهم

چکیده انگلیسی

Because different optimization algorithms have different search behaviors and advantages, hybrid strategy is one of the main research directions to improve the performance of PSO. Inspired by this idea, a dynamic multi-swarm differential learning particle swarm optimizer (DMSDL-PSO) is proposed in this paper. We propose a novel method to merge the differential evolution operator into each sub-swarm of the DMSDL-PSO. Combining the exploration capability of the differential mutation and employing Quasi-Newton method as a local searcher to enhance the exploitation capability, DMSDL-PSO has a good exploration and exploitation capability. According to the characteristics of the DMSDL-PSO, three modified differential mutation operators are discussed. Differential mutation is adopted for the personal historically best particle. Because the velocity updating equation of the particles in PSO has some shortcomings, a modified velocity updating equation is adopted in DMSDL-PSO. In DMSDL-PSO, in which the particles are divided into several small and dynamic sub-swarms. The dynamic change of sub-swarms can promote the information exchange of the whole swarm. In order to test the performance of DMSDL-PSO, 41 benchmark functions are adopted. Lots of numerical experiments are conducted to compare DMSDL-PSO with other popular algorithms. The numerical results demonstrate that DMSDL-PSO performs better on some benchmark functions.