دانلود مقاله ISI انگلیسی شماره 138123
ترجمه فارسی عنوان مقاله

یک روش ترکیبی جدید برای انتخاب ویژگی و پشتیبانی از مدل بردار ماشین بر اساس هوش مصنوعی خود سازگار

عنوان انگلیسی
A new hybrid approach for feature selection and support vector machine model selection based on self-adaptive cohort intelligence
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
138123 2017 44 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 13400 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 18 تومان 21 روز بعد از پرداخت 241,200 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 36 تومان 11 روز بعد از پرداخت 482,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
تولید محتوا برای سایت شما
پایگاه ISIArticles آمادگی دارد با همکاری مجموعه «شهر محتوا» با بهره گیری از منابع معتبر علمی، برای کتاب، سایت، وبلاگ، نشریه و سایر رسانه های شما، به زبان فارسی «تولید محتوا» نماید.
  • تولید محتوا با مقالات ISI برای سایت یا وبلاگ شما
  • تولید محتوا با مقالات ISI برای کتاب شما
  • تولید محتوا با مقالات ISI برای نشریه یا رسانه شما
  • و...

پیشنهاد می کنیم کیفیت محتوای سایت خود را با استفاده از منابع علمی، افزایش دهید.

سفارش تولید محتوا کد تخفیف 10 درصدی: isiArticles
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 88, 1 December 2017, Pages 118-131

پیش نمایش مقاله
پیش نمایش مقاله یک روش ترکیبی جدید برای انتخاب ویژگی و پشتیبانی از مدل بردار ماشین بر اساس هوش مصنوعی خود سازگار

چکیده انگلیسی

This research proposes a new hybrid approach for feature selection and Support Vector Machine (SVM) model selection based on a new variation of Cohort Intelligence (CI) algorithm. Feature selection can improve the accuracy of classification algorithms and reduce their computation complexity by removing the irrelevant and redundant features. SVM is a classification algorithm that has been used in many areas, such as bioinformatics and pattern recognition. However, the classification accuracy of SVM depends mainly on tuning its hyperparameters (i.e., SVM model selection). This paper presents a framework that is comprised of the following two major components. First, Self-Adaptive Cohort Intelligence (SACI) algorithm is proposed, which is a new variation of the emerging metaheuristic algorithm, Cohort Intelligence (CI). Second, SACI is integrated with SVM resulting in a new hybrid approach referred to as SVM–SACI for simultaneous feature selection and SVM model selection. SACI differs from CI by employing tournament-based mutation and self-adaptive scheme for sampling interval and mutation rate. Furthermore, SACI is both real-coded and binary-coded, which makes it directly applicable to both binary and continuous domains. The performance of SACI for feature selection and SVM model selection was examined using ten benchmark datasets from the literature and compared with those of CI and five well-known metaheuristics, namely, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE) and Artificial Bee Colony (ABC). The comparative results demonstrate that SACI outperformed CI and comparable to or better than the other compared metaheuristics in terms of the SVM classification accuracy and dimensionality reduction. In addition, SACI requires less tuning efforts as the number of its control parameters is less than those of the other compared metaheuristics due to adopting the self-adaptive scheme in SACI. Finally, this research suggests employing more efficient methods for high-dimensional or large datasets due to the relatively high training time required by search strategies based on metaheuristics when applied to such datasets.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 13400 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 18 تومان 21 روز بعد از پرداخت 241,200 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 36 تومان 11 روز بعد از پرداخت 482,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.