دانلود مقاله ISI انگلیسی شماره 138125
ترجمه فارسی عنوان مقاله

الگوریتم اصلاح شده کلنی زنبور عسل با اپراتور به روز رسانی مبتنی بر اصلاح محله و استراتژی مستقل ارث بری برای بهینه سازی جهانی

عنوان انگلیسی
An improved artificial bee colony algorithm with modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138125 2017 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 58, February 2017, Pages 134-156

ترجمه کلمات کلیدی
الگوریتم بهینه سازی بیولوژیکی الهام گرفته، هوشافزاری کلنی زنبور عسل مصنوعی، بهینه سازی،
کلمات کلیدی انگلیسی
Biological-inspired optimization algorithm; Swarm intelligence; Artificial bee colony; Optimization;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم اصلاح شده کلنی زنبور عسل با اپراتور به روز رسانی مبتنی بر اصلاح محله و استراتژی مستقل ارث بری برای بهینه سازی جهانی

چکیده انگلیسی

Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global optimization problem with good performance for its excellent exploration capability. It has received a great deal of attentions of researchers since it was proposed, and was employed to many application fields for its advantages of excellent global optimization ability and easy to implement. However, the basic ABC has some drawbacks like poor exploitation and slow convergence. In this paper, an improved artificial bee colony algorithm based on modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization called MNIIABC algorithm is proposed. In the proposed algorithm, a modified-neighborhood-based update operator, which contains a global-best term and a subset-best guided term, is applied in the employed bee stage to balance the exploration and exploitation. Aiming to improve the solution diversity, a subset partition method for producing perturbation term is considered. In order to enhance the exploitation of the algorithm, an independent-inheriting-search strategy is used in the onlooker stage. Experiment results tested on multiple benchmark functions show that the proposed method is effective, and has good performance. The comparison experimental results illustrate that the proposed algorithm has good solution quality and convergence characteristics.