دانلود مقاله ISI انگلیسی شماره 141695
ترجمه فارسی عنوان مقاله

سیستم ماموگرافی امپدانس برق تهویه مطبوع

عنوان انگلیسی
Conditioning Electrical Impedance Mammography System
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
141695 2018 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Measurement, Volume 116, February 2018, Pages 38-48

ترجمه کلمات کلیدی
تجهیزات و ابزارهای تصویربرداری بیومدیک، غربالگری و روش پیشگیری از پیشگیری، تشخیص سرطان پستان، توموگرافی امپدانس الکتریکی، منبع جریان بی-امپدانس، و ماموگرافی امپدانس الکتریکی،
کلمات کلیدی انگلیسی
Biomedical imaging equipment and instrument; Screening and prescreening modality; Breast cancer detection; Electrical impedance tomography; Bio-impedance current source; And electrical impedance mammography;
پیش نمایش مقاله
پیش نمایش مقاله  سیستم ماموگرافی امپدانس برق تهویه مطبوع

چکیده انگلیسی

A multi-frequency Electrical Impedance Mammography (EIM) system has been developed to evaluate the conductivity and permittivity spectrums of breast tissues, which aims to improve early detection of breast cancer as a non-invasive, relatively low cost and label-free screening (or pre-screening) method. Multi-frequency EIM systems typically employ current excitations and measure differential potentials from the subject under test. Both the output impedance and system performance (SNR and accuracy) depend on the total output resistance, stray and output capacitances, capacitance at the electrode level, crosstalk at the chip and PCB levels. This makes the system design highly complex due to the impact of the unwanted capacitive effects, which substantially reduce the output impedance of stable current sources and bandwidth of the data that can be acquired. To overcome these difficulties, we present new methods to design a high performance, wide bandwidth EIM system using novel second generation current conveyor operational amplifiers based on a gyrator (OCCII-GIC) combination with different current excitation systems to cancel unwanted capacitive effects from the whole system. We reconstructed tomography images using a planar E-phantom consisting of an RSC circuit model with different set of values, which represents the resistance of extra-cellular (R), intra-cellular (S) and membrane capacitance (C) of the breast tissues to validate the performance of the system. The experimental results demonstrated that an EIM system with the new design achieved a high output impedance of 10 MΩ at 1 MHz to at least 3 MΩ at 3 MHz frequency, with an average SNR and modelling accuracy of over 80 dB and 99%, respectively.