دانلود مقاله ISI انگلیسی شماره 142027
ترجمه فارسی عنوان مقاله

یک رویکرد یادگیری متمایز مبتنی بر خوشه برای طبقه بندی گسل محلی در شبکه های هوشمند

عنوان انگلیسی
A cluster-based dissimilarity learning approach for localized fault classification in Smart Grids
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
142027 2018 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Swarm and Evolutionary Computation, Volume 39, April 2018, Pages 267-278

پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد یادگیری متمایز مبتنی بر خوشه برای طبقه بندی گسل محلی در شبکه های هوشمند

چکیده انگلیسی

Modeling and recognizing faults and outages in a real-world power grid is a challenging task, in line with the modern concept of Smart Grids. The availability of Smart Sensors and data networks allows to “x-ray scan” the power grid states. The present paper deals with a recognition system of fault states described by heterogeneous information in the real-world power grid managed by the ACEA company in Italy. The pattern recognition problem is tackled as two-class classification problem using a Clustering-Evolutionary Computing approach and it is able to generate together with a Boolean decision also a score value. The last is computed through a fuzzy membership function and output values are interpreted as a reliability measure for the Boolean decision rule. As many real-world pattern recognition applications, the starting feature space is structured and the custom based dissimilarity measure adopted leads to a non-Euclidean dissimilarity matrix. Hence, a comparison of the classification performances between the proposed two-class classifier system and the well-known Support Vector Machine, on the data set at hands, is performed using a suitable kernel designed for the non-Euclidean case.