دانلود مقاله ISI انگلیسی شماره 142109
ترجمه فارسی عنوان مقاله

سیستم منطقی فازی تطبیقی ​​برای مدیریت انرژی مسکونی در محیط های شبکه هوشمند

عنوان انگلیسی
An adaptive fuzzy logic system for residential energy management in smart grid environments
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
142109 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 186, Part 1, 15 January 2017, Pages 68-81

ترجمه کلمات کلیدی
منطق فازی سازگار، سیستم های مستقل، سیستم مدیریت انرژی مسکونی، شبکه های هوشمند ترموستات هوشمند، قیمت متغیر زمان شبکه های حسگر بی سیم،
کلمات کلیدی انگلیسی
Adaptive fuzzy logic; Autonomous systems; Residential Energy management systems; Smart grids; Smart thermostats; Time-varying pricing; Wireless sensor networks;
پیش نمایش مقاله
پیش نمایش مقاله  سیستم منطقی فازی تطبیقی ​​برای مدیریت انرژی مسکونی در محیط های شبکه هوشمند

چکیده انگلیسی

Heating, Ventilation and Air Conditioning (HVAC) systems represent a significant portion of total residential energy consumption in North America. Programmable thermostats are being used broadly for automatic control of residential HVAC systems while users initialize their everyday schedules and preferences. The main aim of smart grid initiatives such as time-varying prices is to encourage consumers to reduce their consumption during high electricity demand. However, it is usually a hassle to residential customers to manually re-programme their thermostats in response to dynamic electricity prices or environmental conditions that vary over time. In addition, the lack of energy management systems such as thermostats capable of learning autonomously and adapting to users’ schedule and preference changes are major obstacles of existing thermostats in order to save energy and optimally benefit from smart grid initiatives. To address these problems, in this paper an adaptable autonomous energy management solution for residential HVAC systems is presented. Firstly, an autonomous thermostat utilizing a synergy of Supervised Fuzzy Logic Learning (SFLL), wireless sensors capabilities, and dynamic electricity pricing is developed. In the cases that the user may override the decision made by autonomous system, an Adaptive Fuzzy Logic Model (AFLM) is developed in order to detect, learn, and adapt to new user’s preferences. Moreover, to emulate a flexible residential building, a ‘house energy simulator’ equipped with HVAC system, thermostat and smart meter is developed in Matlab-GUI. The results show that the developed autonomous thermostat can adjust the set point temperatures of the day without any interaction from its user while saving energy and cost without jeopardizing user’s thermal comfort. In addition, the results demonstrate that if any change(s) occurs to user’s schedules and preferences, the developed AFLM learns and adapts to new modifications while not ignoring energy conservation aspects.