دانلود مقاله ISI انگلیسی شماره 146221
ترجمه فارسی عنوان مقاله

برآورد طیفی سریع و دقیق برای تشخیص آنلاین نوار شکاف جزئی موتور القایی

عنوان انگلیسی
Fast and accurate spectral estimation for online detection of partial broken bar in induction motors
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
146221 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 98, 1 January 2018, Pages 63-77

پیش نمایش مقاله
پیش نمایش مقاله  برآورد طیفی سریع و دقیق برای تشخیص آنلاین نوار شکاف جزئی موتور القایی

چکیده انگلیسی

In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.