دانلود مقاله ISI انگلیسی شماره 148903
ترجمه فارسی عنوان مقاله

برنامه ریزی هوشمندانه شهری با استفاده از تجزیه و تحلیل داده های بزرگ برای رقابت با قابلیت همکاری در اینترنت از چیز

عنوان انگلیسی
Smart urban planning using Big Data analytics to contend with the interoperability in Internet of Things
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
148903 2017 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 77, December 2017, Pages 65-76

پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی هوشمندانه شهری با استفاده از تجزیه و تحلیل داده های بزرگ برای رقابت با قابلیت همکاری در اینترنت از چیز

چکیده انگلیسی

The recent growth and expansion in the field of Internet of Things (IoT) is providing a great business prospective in the direction of the new era of smart urban. The insight of the smart urban is extensively preferred, as it improves the excellence of life of citizens, connecting several regulations, that is, smart transportation, smart parking, smart environment, smart healthcare, and so forth. Continuous intensification of the multifaceted urban set-up is extensively challenged by real-time processing of data and smart decision capabilities. Consequently, in this paper, we propose a smart city architecture which is based on Big Data analytics. The proposed scheme is comprised of three modules: (1) data acquisition and aggregation module collects varied and diverse data interrelated to city services, (2) data computation and processing module performs normalization, filtration, processing and data analysis, and (3) application and decision module formulates decisions and initiates events. The proposed architecture is a generic solution for the smart urban planning and variety of datasets is analyzed to validate this architecture. In addition, we tested reliable datasets on Hadoop server to verify the threshold limit value (TLV) and the investigation demonstrates that the proposed scheme offer valuable imminent into the community development systems to get better the existing smart urban architecture. Moreover, the efficiency of proposed architecture in terms of throughput is also shown.