دانلود مقاله ISI انگلیسی شماره 148919
ترجمه فارسی عنوان مقاله

به سوی روباتیک کمک های مادام العمر: اتصال تنگ بین ادراک شی و دستکاری

عنوان انگلیسی
Towards lifelong assistive robotics: A tight coupling between object perception and manipulation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
148919 2018 52 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 291, 24 May 2018, Pages 151-166

ترجمه کلمات کلیدی
ربات های کمک کننده، درک سه بعدی سه بعدی، یادگیری باز یادگیری تعاملی، دستکاری شی،
کلمات کلیدی انگلیسی
Assistive robots; 3D object perception; Open-ended learning; Interactive learning; Object manipulation;
پیش نمایش مقاله
پیش نمایش مقاله  به سوی روباتیک کمک های مادام العمر: اتصال تنگ بین ادراک شی و دستکاری

چکیده انگلیسی

This paper presents an artificial cognitive system tightly integrating object perception and manipulation for assistive robotics. This is necessary for assistive robots, not only to perform manipulation tasks in a reasonable amount of time and in an appropriate manner, but also to robustly adapt to new environments by handling new objects. In particular, this system includes perception capabilities that allow robots to incrementally learn object categories from the set of accumulated experiences and reason about how to perform complex tasks. To achieve these goals, it is critical to detect, track and recognize objects in the environment as well as to conceptualize experiences and learn novel object categories in an open-ended manner, based on human–robot interaction. Interaction capabilities were developed to enable human users to teach new object categories and instruct the robot to perform complex tasks. A naive Bayes learning approach with a Bag-of-Words object representation are used to acquire and refine object category models. Perceptual memory is used to store object experiences, feature dictionary and object category models. Working memory is employed to support communication purposes between the different modules of the architecture. A reactive planning approach is used to carry out complex tasks. To examine the performance of the proposed architecture, a quantitative evaluation and a qualitative analysis are carried out. Experimental results show that the proposed system is able to interact with human users, learn new object categories over time, as well as perform complex tasks.