دانلود مقاله ISI انگلیسی شماره 150525
ترجمه فارسی عنوان مقاله

توصیه شخصی بر اساس توزیع جرم دو طرفه ترجیحی

عنوان انگلیسی
Personalized recommendation based on preferential bidirectional mass diffusion
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150525 2017 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 469, 1 March 2017, Pages 397-404

ترجمه کلمات کلیدی
توصیه شخصی انتشار دو طرفه ترجیحی، شبکه دو طرفه،
کلمات کلیدی انگلیسی
Personalized recommendation; Preferential bidirectional diffusion; Bipartite network;
پیش نمایش مقاله
پیش نمایش مقاله  توصیه شخصی بر اساس توزیع جرم دو طرفه ترجیحی

چکیده انگلیسی

Recommendation system provides a promising way to alleviate the dilemma of information overload. In physical dynamics, mass diffusion has been used to design effective recommendation algorithms on bipartite network. However, most of the previous studies focus overwhelmingly on unidirectional mass diffusion from collected objects to uncollected objects, while overlooking the opposite direction, leading to the risk of similarity estimation deviation and performance degradation. In addition, they are biased towards recommending popular objects which will not necessarily promote the accuracy but make the recommendation lack diversity and novelty that indeed contribute to the vitality of the system. To overcome the aforementioned disadvantages, we propose a preferential bidirectional mass diffusion (PBMD) algorithm by penalizing the weight of popular objects in bidirectional diffusion. Experiments are evaluated on three benchmark datasets (Movielens, Netflix and Amazon) by 10-fold cross validation, and results indicate that PBMD remarkably outperforms the mainstream methods in accuracy, diversity and novelty.