دانلود مقاله ISI انگلیسی شماره 151165
ترجمه فارسی عنوان مقاله

شبکه عصبی مرکزی محاسباتی سلولی برای هوش مصنوعی فرکانس در یک سیستم قدرت چند ماشین

عنوان انگلیسی
Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151165 2017 32 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neural Networks, Volume 93, September 2017, Pages 21-35

پیش نمایش مقاله
پیش نمایش مقاله  شبکه عصبی مرکزی محاسباتی سلولی برای هوش مصنوعی فرکانس در یک سیستم قدرت چند ماشین

چکیده انگلیسی

To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results.