دانلود مقاله ISI انگلیسی شماره 151440
ترجمه فارسی عنوان مقاله

شبکه تابع تشدید شعاعی برای تجزیه و تحلیل اطلاعات دیابت حاملگی

عنوان انگلیسی
Evolutionary radial basis function network for gestational diabetes data analytics
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151440 2017 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Science, Available online 8 August 2017

ترجمه کلمات کلیدی
هوش محاسباتی، تصمیم سازی، تجزیه و تحلیل داده های بزرگ، داده کاوی، شبکه های عصبی مصنوعی، دیابت بارداری، بارداری،
کلمات کلیدی انگلیسی
Computational intelligence; Decision making; Big data analytics; Data mining; Artificial neural networks; Gestational diabetes; Pregnancy;
پیش نمایش مقاله
پیش نمایش مقاله  شبکه تابع تشدید شعاعی برای تجزیه و تحلیل اطلاعات دیابت حاملگی

چکیده انگلیسی

The development of smart decision support systems (DSSs) that seek to simulate human behavioral aspects is a major challenge for computational intelligence (CI). Artificial neural network (ANN) approaches have the ability to solve complex decision-making problems that involve uncertainty and a large amount of information in a fast and reliable way. The application of this evolutionary CI technique to analyze a large amount of data is an important strategy to solve several problems in healthcare management. This paper proposes the modeling, performance evaluation, and comparison analysis of an ANN technique known as the radial basis function network (RBFNetwork) to identify possible cases of gestational diabetes that can lead to multiple risks for both the pregnant women and the fetus. This method achieved promising results with a precision of 0.785, F-measure of 0.786, ROC area of 0.839, and Kappa statistic of 0.5092. These indicators show that this ANN-based approach is an excellent predictor for gestational diabetes mellitus. This research provides a comprehensive decision-making model capable of improving the care provided to women who are at a risk of developing gestational diabetes, which is the most common metabolic problem in gestation with a prevalence of 3–18%. Thus, this work can contribute to the reduction of maternal and fetal mortality and morbidity rates.