دانلود مقاله ISI انگلیسی شماره 151473
ترجمه فارسی عنوان مقاله

تشخیص و پیش بینی تغییر موضوع سیستم های مبتنی بر دانش: یک تجزیه و تحلیل کتابشناختی مبتنی بر موضوع از سال 1991 تا 2016

عنوان انگلیسی
Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151473 2017 27 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 133, 1 October 2017, Pages 255-268

ترجمه کلمات کلیدی
تجزیه و تحلیل موضوعی، تشخیص موضوع و ردیابی، کتابشناختی استخراج متن، سیستم های مبتنی بر دانش،
کلمات کلیدی انگلیسی
Topic analysis; Topic detection and tracking; Bibliometrics; Text mining; Knowledge-based Systems;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص و پیش بینی تغییر موضوع سیستم های مبتنی بر دانش: یک تجزیه و تحلیل کتابشناختی مبتنی بر موضوع از سال 1991 تا 2016

چکیده انگلیسی

The journal Knowledge-based Systems (KnoSys) has been published for over 25 years, during which time its main foci have been extended to a broad range of studies in computer science and artificial intelligence. Answering the questions: “What is the KnoSys community interested in?” and “How does such interest change over time?” are important to both the editorial board and audience of KnoSys. This paper conducts a topic-based bibliometric study to detect and predict the topic changes of KnoSys from 1991 to 2016. A Latent Dirichlet Allocation model is used to profile the hotspots of KnoSys and predict possible future trends from a probabilistic perspective. A model of scientific evolutionary pathways applies a learning-based process to detect the topic changes of KnoSys in sequential time slices. Six main research areas of KnoSys are identified, i.e., expert systems, machine learning, data mining, decision making, optimization, and fuzzy, and the results also indicate that the interest of KnoSys communities in the area of computational intelligence is raised, and the ability to construct practical systems through knowledge use and accurate prediction models is highly emphasized. Such empirical insights can be used as a guide for KnoSys submissions.