دانلود مقاله ISI انگلیسی شماره 151509
ترجمه فارسی عنوان مقاله

یادگیری ماشین گروه: پارادایم مدل سازی نشده برای خصوصی سازی مخزن نفت

عنوان انگلیسی
Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151509 2017 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Petroleum Science and Engineering, Volume 151, March 2017, Pages 480-487

ترجمه کلمات کلیدی
گروه یادگیری ماشین، خصوصیات و مدل سازی مخزن، خواص مخزن نفت، هوش محاسباتی،
کلمات کلیدی انگلیسی
Ensemble machine learning; Reservoir characterization and modeling; Petroleum reservoir properties; Computational intelligence;
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری ماشین گروه: پارادایم مدل سازی نشده برای خصوصی سازی مخزن نفت

چکیده انگلیسی

The successful applications of the conventional Computational Intelligence (CI) techniques and Hybrid Intelligent Systems (HIS) in petroleum reservoir characterization have been reported. However, these techniques are limited in their capability to handle a single hypothesis of a problem at a time. The major objective of the reservoir characterization process is to produce models that are robust enough to help improve the accuracy of the predictions of reservoir properties for use in full-field and large-scale simulation models. Research in CI continues to evolve new techniques and paradigms to meet this noble objective. It has been shown that there are uncertainties in the reservoir characterization process as well as the optimal choice of CI/HIS models parameters. The main challenge is to develop models that are capable of handling multiple hypotheses to reduce the uncertainties thereby ensuring optimal solutions. The ensemble machine learning paradigm has been established to tackle this challenge. This new machine learning technology has not been adequately explored in handling some of the petroleum engineering challenges. This paper rigorously reviews the concept of ensemble learning paradigm, presents successful applications outside petroleum engineering and the geosciences, discusses a few successful attempts in petroleum engineering and the geosciences, and concludes with some recommendations for the much-needed future applications.