دانلود مقاله ISI انگلیسی شماره 151588
ترجمه فارسی عنوان مقاله

نقشه برداری محاسباتی برای کسب و ارائه دانش یادگیرنده

عنوان انگلیسی
Computational narrative mapping for the acquisition and representation of lessons learned knowledge
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151588 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 71, May 2018, Pages 190-209

ترجمه کلمات کلیدی
مدیریت دانش، درسهای آموخته شده، کسب دانش، نمایندگی دانش، یادگیری انسانی، نقشه برداری محاسباتی،
کلمات کلیدی انگلیسی
Knowledge management; Lessons learned; Knowledge acquisition; Knowledge representation; Human learning; Computational narrative mapping;
پیش نمایش مقاله
پیش نمایش مقاله  نقشه برداری محاسباتی برای کسب و ارائه دانش یادگیرنده

چکیده انگلیسی

Lessons learned knowledge is traditionally gained from trial and error or narratives describing past experiences. Learning from narratives is the preferred option to transfer lessons learned knowledge. However, learners with insufficient prior knowledge often experience difficulties in grasping the right information from narratives. This paper introduces an approach that uses narrative maps to represent lessons learned knowledge to help learners understand narratives. Since narrative mapping is a time-consuming, labor-intensive and knowledge-intensive process, the proposed approach is supported by a computational narrative mapping (CNM) method to automate the process. CNM incorporates advanced technologies, such as computational linguistics and artificial intelligence (AI), to identify and extract critical narrative elements from an unstructured, text-based narrative and organize them into a structured narrative map representation. This research uses a case study conducted in the construction industry to evaluate CNM performance in comparison with existing paragraph and concept mapping approaches. Among the results, over 90% of respondents asserted that CNM enhanced their understanding of the lessons learned. CNM’s performance in identifying and extracting narrative elements was evaluated through an experiment using real-life narratives from a reminiscence study. The experiment recorded a precision and recall rate of over 75%.