دانلود مقاله ISI انگلیسی شماره 151607
ترجمه فارسی عنوان مقاله

درک موقعیت مکان آتشفشانی توسط اتصال معنایی از اشیاء بصری و ساخت مدل های اطلاعاتی

عنوان انگلیسی
Fireground location understanding by semantic linking of visual objects and building information models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151607 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Fire Safety Journal, Volume 91, July 2017, Pages 1026-1034

ترجمه کلمات کلیدی
مدل های اطلاعات ساختمان، تجزیه و تحلیل آتش، چندین دید سنجی، برآورد مکان، تشخیص چهره بصری، پیوند معنایی،
کلمات کلیدی انگلیسی
Building information models; Fire analysis; Multi-view sensing; Location estimation; Visual object recognition; Semantic linking;
پیش نمایش مقاله
پیش نمایش مقاله  درک موقعیت مکان آتشفشانی توسط اتصال معنایی از اشیاء بصری و ساخت مدل های اطلاعاتی

چکیده انگلیسی

This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi-)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding.