دانلود مقاله ISI انگلیسی شماره 153419
ترجمه فارسی عنوان مقاله

تحقیق در یک روش مدل سازی دانش برای تشخیص خطا ابزار ماشین بر اساس معانی رسمی

عنوان انگلیسی
Research on a knowledge modelling methodology for fault diagnosis of machine tools based on formal semantics
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
153419 2017 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advanced Engineering Informatics, Volume 32, April 2017, Pages 92-112

ترجمه کلمات کلیدی
ماشین ابزار، تشخیص گسل، مدل سازی دانش، هستی شناسی، معانی رسمی،
کلمات کلیدی انگلیسی
Machine tool; Fault diagnosis; Knowledge modelling; Ontology; Formal semantics;
پیش نمایش مقاله
پیش نمایش مقاله  تحقیق در یک روش مدل سازی دانش برای تشخیص خطا ابزار ماشین بر اساس معانی رسمی

چکیده انگلیسی

Fault diagnosis is a critical activity in PHM (Prognostics and Health Management) of machine tools due to its great significance in such efforts as prolonging lifespan, improving production efficiency, and reducing production costs. An efficient knowledge model is necessary to build an intelligent fault diagnosis system. There have been several achievements in knowledge representation and modelling. However, due to their various purposes and depths, the established knowledge models are less compatible, reusable or transplantable, which restricts knowledge sharing and integration. A knowledge modelling methodology for fault diagnosis of machine tools based on formal semantics (KMM-MTFD) is proposed in this paper to build an open, shared, and scalable ontology-based knowledge model of fault diagnosis of various machine tools (OKM-MTFD). First, the proposed predicate-logic-based analysis method of fault elements is adopted to study the fault diagnosis domain and extract the common domain knowledge, which enables the establishment of the core ontology of OKM-MTFD to assure formal semantics. Next, using the proposed two-stage classification method of fault elements and external ontology reference methods, the core ontology can be extended into OKM-MTFD for a type or a specific machine tool. The knowledge reasoning and querying methods based on OWL axioms, SWRL rules, special fault attributes and SPARQL are provided to utilize the knowledge base efficiently. Finally, an ontology-based knowledge model and knowledge base of a hobbing machine tool is presented to exemplify the validity of the proposed KMM-MTFD.