دانلود مقاله ISI انگلیسی شماره 155627
ترجمه فارسی عنوان مقاله

پیش بینی سرعت باد چند مرحله ای بر اساس یک معماری پیش بینی ترکیبی و یک الگوریتم بهبود خفاش

عنوان انگلیسی
Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
155627 2017 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Conversion and Management, Volume 143, 1 July 2017, Pages 410-430

پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی سرعت باد چند مرحله ای بر اساس یک معماری پیش بینی ترکیبی و یک الگوریتم بهبود خفاش

چکیده انگلیسی

As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.