دانلود مقاله ISI انگلیسی شماره 156270
ترجمه فارسی عنوان مقاله

تکامل متدولوژیکی و مرزهای شناسایی، مدل سازی و جلوگیری از سقوط ثانویه در بزرگراه ها

عنوان انگلیسی
Methodological evolution and frontiers of identifying, modeling and preventing secondary crashes on highways
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
156270 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Accident Analysis & Prevention, Volume 117, August 2018, Pages 40-54

ترجمه کلمات کلیدی
سقوط ثانویه، ایمنی جاده، پیشگیری از سقوط، حوادث ترافیکی، وسایل نقلیه متصل، بزرگراه،
کلمات کلیدی انگلیسی
Secondary crash; Road safety; Crash prevention; Traffic incident; Connected vehicles; Highway;
پیش نمایش مقاله
پیش نمایش مقاله  تکامل متدولوژیکی و مرزهای شناسایی، مدل سازی و جلوگیری از سقوط ثانویه در بزرگراه ها

چکیده انگلیسی

Secondary crashes (SCs) or crashes that occur within the boundaries of the impact area of prior, primary crashes are one of the incident types that frequently affect highway traffic operations and safety. Existing studies have made great efforts to explore the underlying mechanisms of SCs and relevant methodologies have been evolving over the last two decades concerning the identification, modeling, and prevention of these crashes. So far there is a lack of a detailed examination on the progress, lessons, and potential opportunities regarding existing achievements in SC-related studies. This paper provides a comprehensive investigation of the state-of-the-art approaches; examines their strengths and weaknesses; and provides guidance in exploiting new directions in SC-related research. It aims to support researchers and practitioners in understanding well-established approaches so as to further explore the frontiers. Published studies focused on SCs since 1997 have been identified, reviewed, and summarized. Key issues concentrated on the following aspects are discussed: (i) static/dynamic approaches to identify SCs; (ii) parametric/non-parametric models to analyze SC risk, and (iii) deployable countermeasures to prevent SCs. Based on the examined issues, needs, and challenges, this paper further provides insights into potential opportunities such as: (a) fusing data from multiple sources for SC identification, (b) using advanced learning algorithms for real-time SC analysis, and (c) deploying connected vehicles for SC prevention in future research. This paper contributes to the research community by providing a one-stop reference for research on secondary crashes.