دانلود مقاله ISI انگلیسی شماره 157551
ترجمه فارسی عنوان مقاله

تشخیص عبارات ترکیب عناصر در حوزه های علمی هیبریدی در نظر بخش جامعه

عنوان انگلیسی
Recognizing Compound Entity Phrases in Hybrid Academic Domains in View of Community Division
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
157551 2017 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Procedia Computer Science, Volume 108, 2017, Pages 2287-2291

ترجمه کلمات کلیدی
شناخته شده نام شخصیت، استخراج الگو، مشکل کمترین پوشش بخش عمومی،
کلمات کلیدی انگلیسی
Named Entity Recognition; Template Extraction; Minimum Set Cover Problem; Community Division;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص عبارات ترکیب عناصر در حوزه های علمی هیبریدی در نظر بخش جامعه

چکیده انگلیسی

Classifying compound named entities in academic domains, such as the name of papers, patents and projects, plays an important role in enhancing many applications such as knowledge discovering and intelligence property protection. However, there are very little work on this novel and hard problem. Prior mainstream approaches mainly focus on classifying basic named entities (e.g. person names, organization names, twitter named entities, and simple entities in specific sci-tech domain etc). We use context templates to extract the possible candidate compound entities roughly, which is used for reducing searching space of text splitting. We reduce the text splitting problem to the community division problem, which is addressed based on the dynamic programming strategy. The construction of indicative words set used in segment validating is reduced to the classical minimum set cover problem, which is also addressed based on dynamic programming. Experimental results on classifying real-world science-technology compound entities show that GenericSegVal achieves a sharp increase in both precision rate and recall rate by comparing with the supervised bidirectional LSTM approach.