دانلود مقاله ISI انگلیسی شماره 157553
ترجمه فارسی عنوان مقاله

جستجوی پیاده در ویدیوهای نظارت با یادگیری ویژگی های عمیق جدی

عنوان انگلیسی
Pedestrian search in surveillance videos by learning discriminative deep features
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
157553 2018 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 283, 29 March 2018, Pages 120-128

ترجمه کلمات کلیدی
جستجوی شخصی دوباره شناسایی، متمایزکننده، سی ان ان، ویژگی عمیق،
کلمات کلیدی انگلیسی
Person search; Re-identification; Discriminative; CNN; Deep feature;
پیش نمایش مقاله
پیش نمایش مقاله  جستجوی پیاده در ویدیوهای نظارت با یادگیری ویژگی های عمیق جدی

چکیده انگلیسی

Searching for a target person in videos captured by many non-overlapped cameras is an important yet challenging problem in the fields of intelligent video surveillance. Person re-identification is a key technique in the person searching task. In this paper, we propose a discriminative objective function to learn deep CNN features for person re-id. Specially, the proposed objective function reduces distances between instances belonging to the same person, and enlarges distances between instances belonging to different persons at the same time. With the goal of inter-class dispersion and intra-class compactness, the obtained deep features can be more discriminative than many traditional training objectives, e.g. softmax, contrastive and triplet objective functions. Extensive experiments on person re-id benchmarks validated the superiority of the proposed objective function. Based on the proposed person re-identification algorithm, we implement a pedestrian search system by integrating three components: pedestrian detection, multi-person tracking and person re-identification together. The whole system is evaluated on a Cross-Camera Pedestrian Search Challenge and achieves superior performances on the evaluation set.