دانلود مقاله ISI انگلیسی شماره 42799
ترجمه فارسی عنوان مقاله

رویکرد بیزی برای ترکیب نظرات کارشناسان با سیستم های پشتیبانی تصمیم: مطالعه موردی تشخیص آنلاین رضایت مصرف کننده

عنوان انگلیسی
A Bayesian approach for incorporating expert opinions into decision support systems: A case study of online consumer-satisfaction detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
42799 2015 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 79, November 2015, Pages 24–32

ترجمه کلمات کلیدی
همجوشی دانش - سیستم خبره - دامنه دانش - تقسیم بندی - بیز - استخراج متن
کلمات کلیدی انگلیسی
Knowledge fusion; Expert system; Domain knowledge; Classification; Bayes; Text mining
پیش نمایش مقاله
پیش نمایش مقاله  رویکرد بیزی برای ترکیب نظرات کارشناسان با سیستم های پشتیبانی تصمیم: مطالعه موردی تشخیص آنلاین رضایت مصرف کننده

چکیده انگلیسی

Interest in the use of (big) company data and data-mining models to guide decisions exploded in recent years. In many domains there are human experts whose knowledge is essential in building, interpreting and applying these models. However, the impact of integrating expert opinions into the decision-making process has not been sufficiently investigated. This research gap deserves attention because the triangulation of information sources is critical for the success of analytical projects. This paper contributes to the decision-making literature by (a) detailing the natural advantages of the Bayesian framework for fusing multiple information sources into one decision support system (DSS), (b) confirming the necessity for adjusted methods in this data-explosion era, and (c) opening the path to future applications of Bayesian DSSs in other organizational research contexts. In concrete, we propose a Bayesian decision support framework that formally fuses subjective human expert opinions with more objective organizational information. We empirically test the proposed Bayesian fusion approach in the context of a customer-satisfaction prediction study and show how it improves the prediction performance of the human experts and a data-mining model ignoring expert information.