دانلود مقاله ISI انگلیسی شماره 52101
ترجمه فارسی عنوان مقاله

انتقال یادگیری با استفاده از هوش محاسباتی: یک بررسی

عنوان انگلیسی
Transfer learning using computational intelligence: A survey
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52101 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 80, May 2015, Pages 14–23

ترجمه کلمات کلیدی
انتقال یادگیری؛ هوش محاسباتی؛ شبکه عصبی؛ بیزی؛ مجموعه های فازی و سیستم ها - الگوریتم ژنتیک
کلمات کلیدی انگلیسی
Transfer learning; Computational intelligence; Neural network; Bayes; Fuzzy sets and systems; Genetic algorithm
پیش نمایش مقاله
پیش نمایش مقاله  انتقال یادگیری با استفاده از هوش محاسباتی: یک بررسی

چکیده انگلیسی

Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. In contrast to classical machine learning methods, transfer learning methods exploit the knowledge accumulated from data in auxiliary domains to facilitate predictive modeling consisting of different data patterns in the current domain. To improve the performance of existing transfer learning methods and handle the knowledge transfer process in real-world systems, computational intelligence has recently been applied in transfer learning. This paper systematically examines computational intelligence-based transfer learning techniques and clusters related technique developments into four main categories: (a) neural network-based transfer learning; (b) Bayes-based transfer learning; (c) fuzzy transfer learning, and (d) applications of computational intelligence-based transfer learning. By providing state-of-the-art knowledge, this survey will directly support researchers and practice-based professionals to understand the developments in computational intelligence-based transfer learning research and applications.